
(عماظم) وصل مجادم ا عمن ماص و درط محمومور در أد عرار د (رکسی ملم زیر عنوال ... Z M M = / vda = 0 + C = C هی ای درسی کند. MA THE اخارست و تاریم نویک متر ده شره را تاریخی محتایی شره ی شره می شود. MA I M ای رای و تاری و وقال کسوه شره و در M()) M نارا کنای و دردی شور به خمر منی

۱۱ م عصر مول کور این معادله ندان می دهد که نسبا در اول ملح معصر مول کور این معادل می دهد که نسبا در اول ملح معصر مول کور من این ماند کران ماند کران ماند کران ماند کران ماند کران ماند کران کار می منابط واردارد و مادامی به تنشی به درناصه کسسان باخی می ما ند ، محور از مرزم معلم عورمی لند $dF = \sigma_{x} dA \quad (our)$ $dF = \sigma_{x} dA \quad (our)$ $dF = \sigma_{x} dA \quad (our)$ $\sum F_{\chi} = 0 \implies \int dF = 0 \implies \int \sigma_{\chi} dA = 0 \implies \int \frac{y}{c} \sigma_{\chi}^{\text{Mos}} dA = 0$ $\sigma_{\chi}^{\text{Mos}} = 0$ $\sigma_{\chi}^{\text{Mos}} = 0$ To A y dA =0 JydA =0

A JydA =0 IMy=0 - JdMy=0 - JZdF=0- JZ.Ox.dA=0
A
A
A A Z O Mar dA=0 D Tay=0

A Z J O Mar dA=0 D Tay=0

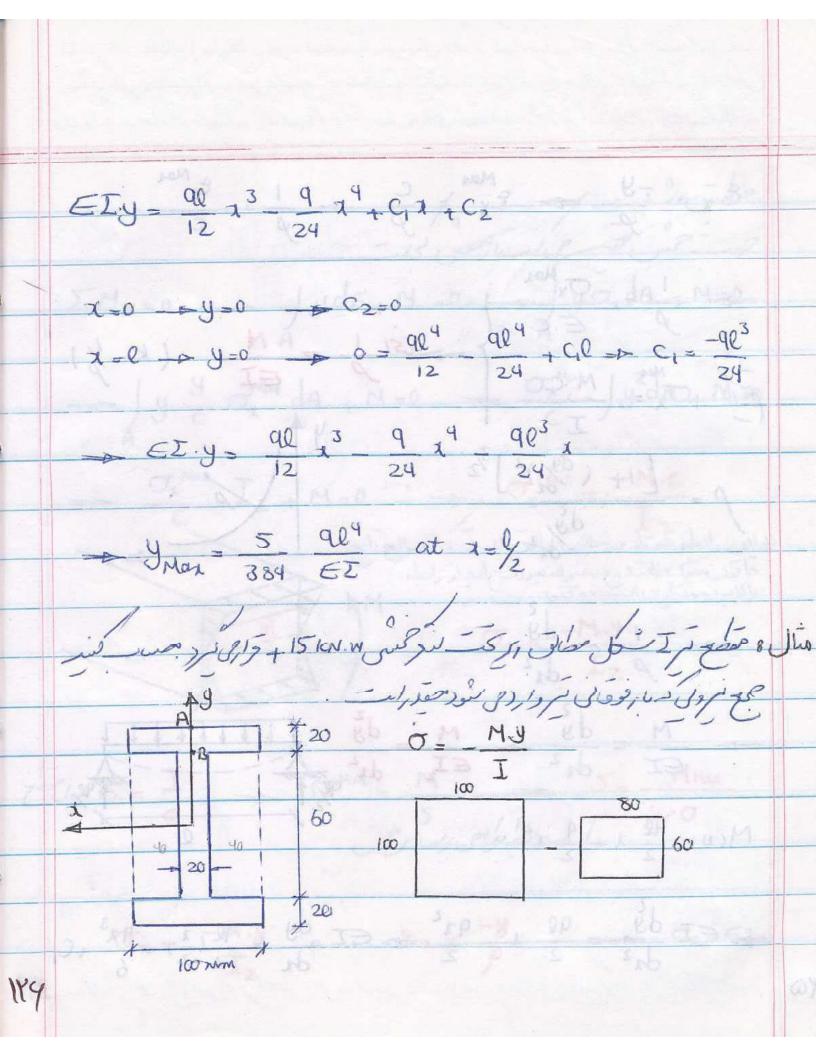
A A Tay=0

alder and the property of the same of the IMZ=0 - JydF+M=0 - JyoudA +M=0
A Jy G onas da + M=0 => Ox Max Jy da + M=0 Men Iz + M=0

Men = -M.C

Iz

Wind cludy each could palce live in the cludy of the could could be cou Color 5 = I OMON M 5 = MMAN

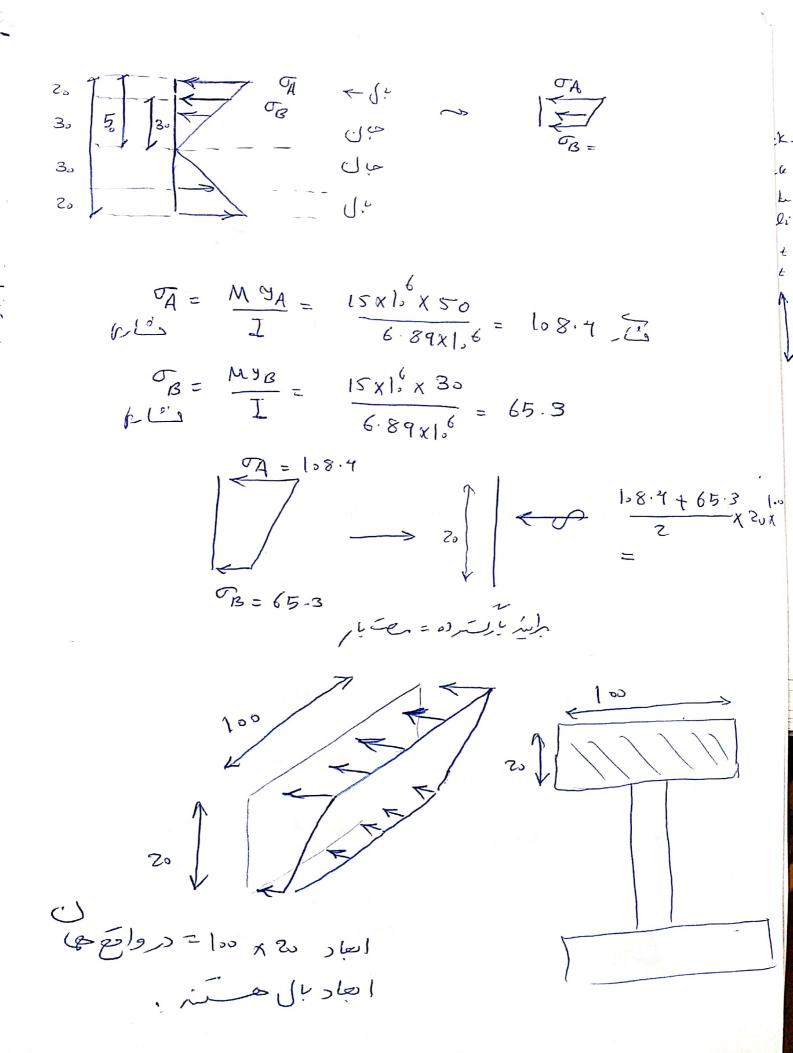

Color 5 = MMAN

C $O_{z} = \frac{-M \cdot y}{I_{z}} \qquad \varepsilon_{x} = \frac{-y}{\rho} \qquad O_{x} = \varepsilon \varepsilon_{x}$ $|Y| = \frac{1}{2} \sum_{y} \frac{1}{y} = \frac{1}{2$

$$E_{X} = \frac{-y}{g} \Rightarrow e_{X}^{Nax} = \frac{c}{g} \Rightarrow \frac{1}{g} = e_{X}^{Nax}$$

$$\int_{Q} \frac{1}{E.c} = \frac{c}{g} = \frac{c}{g} = \frac{c}{g} = \frac{c}{g}$$

$$\int_{X}^{Nax} \frac{M.c}{x} = \frac{1}{I} = \frac{M}{g} = \frac{c}{g} = \frac{c}{$$

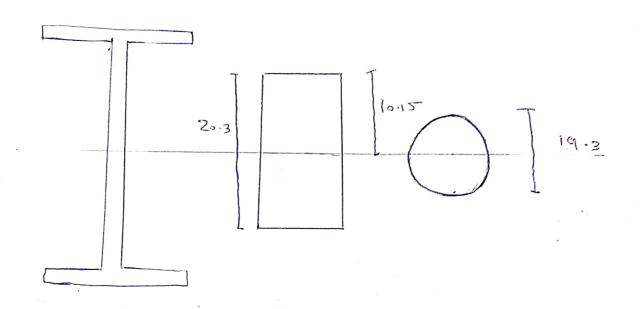


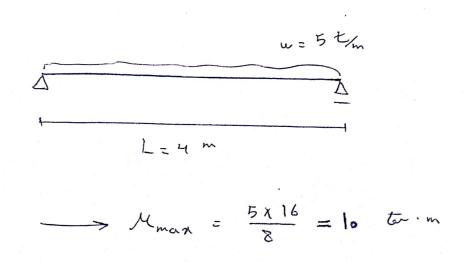
$$D_{A} = \frac{100^{4}}{12} = \frac{100 \times 60^{3}}{12} = 6.89 \times 10^{6} \text{ mm}^{4}$$

$$D_{A} = \frac{15 \times 10^{6} \times 50}{1} = -108.9 \text{ Mpg}$$

$$D_{B} = \frac{3}{5} = 0.3 \text{ Mpg}$$

$$D_{A} = \frac{108.9 \text{ Mpg}}{108.9 \text{ Mpg}} = \frac{108.9 \text{$$

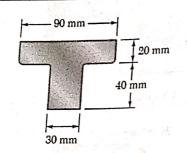

درواقع بسطوی کے شروی وارد بریال : البدا: / مهان ایزی ما ب کردیم. سعدارتنی ه را در الم و ما س بال می اسم خوری . سطوران حجم عال شرد براست با مامت سنی در F= [\frac{A + \frac{a}{B}}{2} \times t_f] \times b

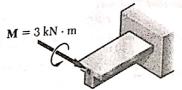

\[
\times \frac{1}{2} \times \times \frac{1}{2} \times \times \frac{1}{2} \times \frac{1}{2}

مقطع مل سرتحت جنس ، لذ جسى ١٠٠٠ ما تعلى كالمد. تعلى ا در مالت برطال العلى المد تعلى المدر مالت برطال المالية [Vall = 0.6 Fy , Fy = 24.0 kg] (h) integral (35) h=2b (12) ب عظم داره ار il) $\sigma = \frac{M\gamma}{I} = \frac{M}{I_{\gamma}} \cdot \frac{M}{S} \langle \sigma_{\alpha II} - \frac{M}{\sigma_{\alpha II}} \rangle Sreq$ IPE330 ple. (2. Sneq = $\frac{bh^3}{h_3} = \frac{bh^2}{6} = \frac{b(2b)^2}{6} = \frac{4b^3}{6} = \frac{2}{3}b^3$ $\Rightarrow \frac{2}{3}b^3 > \frac{10 \times 10}{1440} = 695 \Rightarrow b^3 > 1042$ - b = 10.15 cm h= 20-3 cm A = 206.05 -) M < Sreq - Sreq = 695 cm3 $I_{s} = \frac{RR^{7}}{4}$, $S = \frac{RR^{7}}{4R} = \frac{RR^{3}}{4R} = 695 \rightarrow R^{3} = 885$ -> R= 9.65 cm A = 292-55

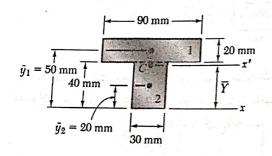
$$\begin{array}{c|c}
\hline
 & 160 \\
\hline
 & 111.5 \\
\hline
 & 111.5 \\
\hline
 & 1177.0 \\
\hline
 & 1177.0$$

Corlai	وزك	que per	1 1000	
697.12	161.8	206.1	سكل	
705.76	229.7	292.55	دايره	
714	'નલ. (62-6	IPE33.	

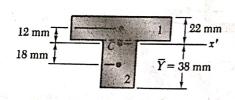



$$\epsilon_m = \frac{a_m}{E} = \frac{a_m}{10.98 \times 10^3 \text{ psi}}$$

$$\epsilon_m = \frac{c}{\rho} \qquad \qquad \rho = \frac{c}{\epsilon_m} = \frac{\gamma_0 \delta_{\text{in}}}{\gamma_0 \delta_{\text{in}}}$$


$$\rho = 1770 in$$

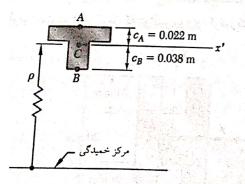
باندن و نختگی مطابق شکل کوپل E = 180 GPa وارد می شود. می دانیم E = 180 GPa و از اثر ماهیچه ها نامن در بختگی مطلوب است (الف) تنشهای کششی و فشاری ماکزیمم وارد بر قطعه، (ب) شعاع انحنای آن.


ا مل الملح مقطع T شكل را به دو مستطيل تقسيم مى كنيم و مى نويسيم

$\bar{Y}\Sigma A = \Sigma$	$\overline{y}A$
$\overline{Y}(r \circ \circ \circ) =$	114×107
$\bar{Y} = \Upsilon \Lambda \text{mm}$	

and the second s	4.17		
mm ^r , <u>y</u> A	mm $\iota \overline{y}$	ساحت، mm۲	
90×10"	٥٠	$(7\circ)(9\circ) = 1\wedge \circ$	-
74×1°4	۲۰	(4°)(T°) = 17°°	,
$\Sigma \overline{y} A = 11 f \times 10^{9}$	± = 0.	$\Sigma A = r_{\circ \circ \circ}$,

گناور لختی مرکز جرم. برای تعیین گشتاور لختی هر مستطیل نسبت به محور 'x' که از مرکز جرم سطح مقطع کل عبرر میکنداز قضیهٔ محورهای موازی استفاده میکنیم و با جمع گشتاورهای لختی مستطیلها مینویسیم



$$I_{x'} = \Sigma(\overline{I} + Ad^{\intercal}) = \Sigma\left(\frac{1}{1\Upsilon}bh^{\intercal} + Ad^{\intercal}\right)$$

$$= \frac{1}{1\Upsilon}(9\circ)(7\circ)^{\intercal} + (9\circ\times7\circ)(1\Upsilon)^{\intercal} + \frac{1}{1\Upsilon}(\Upsilon\circ)(F\circ)^{\intercal} + (\Upsilon\circ\timesF\circ)(1\Lambda)^{\intercal} = \Lambda F \Lambda \times 10^{\intercal} \text{mm}^{\intercal}$$

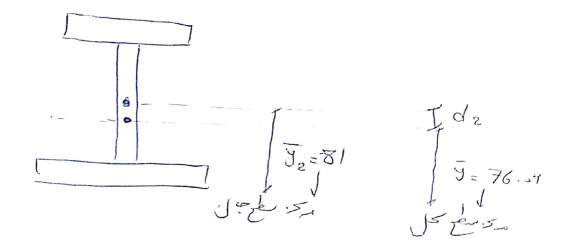
$$I = \lambda 8 \lambda \times 10^{-4} \,\mathrm{m}^{\mathrm{F}}$$

الف نش کششی ماکزیمم. از آنجاکه کوپل خمشی وارد بر قطعه به طرف پایین است، مرکز انحنا در زیر سطح نظافرار دارد. تنش کششی ماکزیمم در نقطهٔ ۸ ایجاد می شود که دور ترین نقطه از مرکز انحنای منحنی است.

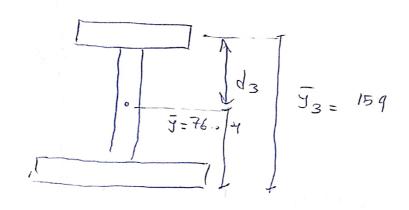
$$\sigma_{A} = \frac{Mc_{A}}{I} = \frac{(\text{rkN.m})(\circ \circ \text{rrm})}{\text{Asa} \cdot \text{re}}$$

نش فشاری ماکزیمم. در نقطهٔ B ایجاد می شود؛ داریم

$$\sigma_B = -\frac{Mc_B}{I} = -\frac{(\text{rkN.m})(\circ \circ \text{rhm})}{\text{Ash} \times 1 \circ \text{-1} \text{m}^F}$$


ب. شعاع انحنا. از معادله (۲۱.۴)، داريم

$$\frac{1}{\rho} = \frac{M}{EI} = \frac{\Upsilon k N.m}{(190 \, \text{GPa})(\Lambda 9 \Lambda \times 10^{-1} \, \text{m}^{\frac{1}{7}})} = \Upsilon \circ 90 \times 10^{-1} \, \text{m}^{-1}$$


$$\sigma = \Upsilon V V M$$

مقع فولادی نشان داده شده از هؤلاد ترمه ساخمای باشی محاز ۱۲۲۰ مقع فولادی نشان داده شده الرائن مع برى سرزى كارزيم در الما معلومات مراثر ال I AM Cun $\frac{1}{3} = 150 + 6 + \frac{6}{2} = 159$ $y_2 = \frac{150}{2} + 6 = 81$ - I J, = 3 cm } J. (3/2) 66 cm ٥ م ادل عسن كا رضي معروبه مالانوى = 5 ine 1 pur MEOUS - Winiu JIro Q = IJCA اسداك محورد التحال كسم. شلا کوری_اسن را: تُل ابر مست سَبل ما سُنْم. 3i 10/3/28 (pin de 15/10/10 is 9, = 3 4/1 J. 13 J=75+6=81 = 75 = U = ie 171 bi فا ملم وسط العلال الحور لل الحود 03 = 6 + 150 + 6 = 159 0-10: - 60 (000) 1 11 Jeb,

(1)	32	A 6×65	3:A				
	81	1.5×150	1170				
(")	159		52470				
		ZA=945	E ZiA=	1170+18	27 <i>5</i> 4 52	47,271	863
ð	$=\frac{\sum \gamma_{i}}{\sum_{j}}$:A : 76.	o 4				
			5.96 6.07	162			
! e.v.:>,,	ر محور لذرریکاه از خ	ي حروست حول	[(I + 」 だいいい	بر عۇرش	شری به سری سطح محور محل		B
		73=yc. 1	T = 76	· 5 -1			
		d= 1			رای بال	ملا له م	

d2 = J- J2 = 76.07-81 = -4.96 · Cultiple 4.96 > 0 0 0 0 5 60

d3 = 5-53= 76-04-159= -82.96 · Cults de 51:1500 82.96 sur 18 11 de de 51.500

$$I = \sum (I + A d^{2})$$

$$= \frac{65 \times 6^{3}}{12} + 6 \times 65 \times (76.54-3)^{2}$$

$$+ \frac{1.5 \times 15^{3}}{12} + 1.5 \times 150 \times (81-76.54)^{2}$$

$$+ \frac{55 \times 6^{3}}{12} + 55 \times 6 \times (76.54-159)^{2}$$

$$= 2.0818 \times 10^{6} + 0.4275 \times 10^{6} + 2.2722 \times 10^{6}$$

$$= 4.781 \times 10^{6} \text{ cm}^{4}$$

$$I = 4.781 \times 10^{6} \text{ cm}^{4}$$
 $C_{1} = 824.885.96 - S_{1} = \overline{C_{1}} = 5.56 \times 10^{4}$
 $C_{2} = 76.04$
 $C_{3} = 76.04$
 $C_{4} = 76.04$
 $C_{5} = 76.04$

$$P = ?$$

$$\sqrt{5m} = 5m$$

$$M = 5P = 800$$

$$P = 160 = 600$$